منابع مشابه
A density version of Cobham's theorem
Cobham's theorem asserts that if a sequence is automatic with respect to two multiplicatively independent bases, then it is ultimately periodic. We prove a stronger density version of the result: if two sequences which are automatic with respect to two multiplicatively independent bases coincide on a set of density one, then they also coincide on a set of density one with a periodic sequence. W...
متن کاملA Density Version of a Geometric Ramsey Theorem
Let V be an n-dimensional affine space over the field with pd elements, p 6= 2. Then for every ε > 0 there is an n(ε) such that if n = dim(V ) n(ε) then any subset of V with more than εjV j elements must contain 3 collinear points (i.e., 3 points lying in a one-dimensional affine subspace).
متن کاملA More General Version of the Costa Theorem
In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملA Density Version of Vinogradov’s Three Primes Theorem
and A is a positive constant. Nowadays Vinogradov’s theorem has become a classical result in additive number theory. Later, using a similar method, van der Corput [2] proved that the primes contain infinitely many non-trivial 3-term arithmetic progressions (3AP). On the other hand, another classical result due to Roth [8] asserts that any subset A of the integers with d(A) > 0 contains infinite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2020
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa180626-13-1